organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-(2-Methyl-2-nitro-1-phenylpropyl)-4-phenyl-1,2,3-selenadiazole

A. Marx,^a V. Manivannan,^a* S. Saravanan,^b S. Muthusubramanian^b and B. Sridhar^c

^aDepartment of Physics, Presidency College, Chennai 600 005, India, ^bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamarajar University, Madurai 625 021, India, and ^cIndian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India

Correspondence e-mail: manivan_1999@yahoo.com

Received 5 November 2007; accepted 9 November 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.028; wR factor = 0.075; data-to-parameter ratio = 13.7.

In the title compound, C₁₈H₁₇N₃O₂Se, the selenadiazole ring makes dihedral angles of 37.71 (8) and 66.79 (6) $^{\circ}$ with the adjacent phenyl ring and the aromatic ring of the phenylpropyl group, respectively. The molecular structure is stabilized by weak intramolecular C-H···Se interactions and the crystal packing is stabilized by a weak $C-H\cdots\pi$ interaction.

Related literature

For related literature, see: Mellini & Merlino (1976a,b); Bertini et al. (1984); El-Kashef et al. (1986); El-Bahaie et al. (1990); Kuroda et al. (2001); Padmavathi et al. (2002); Saravanan et al. (2006); A similar compound with a chlorophenyl ring has been reported by Gunasekaran et al. (2007).

Experimental

Crystal data

$C_{18}H_{17}N_3O_2Se$	a = 10.0178 (8) Å
$M_r = 386.31$	b = 10.2084 (8) Å
Monoclinic, $P2_1/c$	c = 17.4139 (14) Å

 $\beta = 104.820 \ (1)^{\circ}$ V = 1721.6 (2) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.656, T_{\max} = 0.735$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ 219 parameters $wR(F^2) = 0.075$ H-atom parameters constrained S = 1.06 $\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$ 3011 reflections

 $\mu = 2.20 \text{ mm}^{-1}$ T = 295 (2) K

 $R_{\rm int} = 0.025$

 $0.20 \times 0.18 \times 0.14 \text{ mm}$

12015 measured reflections

3011 independent reflections

2648 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the selenadiazole ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C11 - H11 \cdots Se1$	0.93	2.84	3.534 (2)	133
$C17 - H17B \cdots Se1$	0.96	2.63	3.361 (3)	133
$C5 - H5 \cdots Cg1^{i}$	0.93	2.76	3.6297 (3)	156

Symmetry code: (i) -x + 2, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2234).

References

- Bertini, V., Dapporto, P., Lucchesini, F., Sega, A. & De Munno, A. (1984). Acta Cryst. C40, 653-655.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- El-Bahaie, S., Assy, M. G. & Hassanien, M. M. (1990). Pharmazie, 45, 791-792. El-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27 - 30
- Gunasekaran, B., Manivannan, V., Saravanan, S., Muthusubramanian, S. & Nethaji, M. (2007). Acta Cryst. E63, 04024.
- Kuroda, K., Uchikurohane, T., Tajima, S. & Tsubata, K. (2001). US Patent No. 6 166 054
- Mellini, M. & Merlino, S. (1976a). Acta Cryst. B32, 1074-1078.
- Mellini, M. & Merlino, S. (1976b). Acta Cryst. B32, 1079-1082.
- Padmavathi, V., Sumathi, R. P. & Padmaja, A. (2002). J. Ecobiol. 14, 9-12. Saravanan, S., Nithya, A. & Muthusubramanian, S. (2006). J. Heterocycl. Chem 43 149-151
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, o4676 [doi:10.1107/81600536807057327]

5-(2-Methyl-2-nitro-1-phenylpropyl)-4-phenyl-1,2,3-selenadiazole

A. Marx, V. Manivannan, S. Saravanan, S. Muthusubramanian and B. Sridhar

Comment

Selenium containing compounds like 1,2,3-selenadiazole possess various beneficial activities like antifungal (Kuroda *et al.*, 2001), antibacterial (El-Kashef *et al.*, 1986), antimicrobial (El-Bahaie *et al.*, 1990) and insecticidal (Padmavathi *et al.*, 2002) activities. As naturally occurring nitro compounds exhibit broad antibiotic activity and certain alkyl nitro compounds exhibit antitumor activity, it was decided to synthesize and structurally characterize a set of 1,2,3- selenadiazoles with nitro group in the side chain (Saravanan *et al.*, 2006).

The geometric parameters in the title compound, (I), agree with the reported values of similar structure (Mellini & Merlino, 1976*a*,b; Bertini *et al.*, 1984; Gunasekaran *et al.*, 2007). The C1—C6 phenyl ring makes a dihedral angle of 37.71 (8)° with the heterocyclic ring and the C13—C16 phenyl ring makes a dihedral angle of 66.79 (6)° with the heterocyclic ring (Fig. 1).

The details of the hydrogen bonding are given in Table 1. The molecular structure is stabilized by a weak intramolecular C—H···Se interaction and the crystal packing is stabilized by a weak C—H··· π interaction involving the C7/C8/Se1/N2/N1 ring.

Experimental

A solution of 2-[4-methyl-4-nitro-1,3-diphenylpentylidene]-1-hydrazinecarboxamide (0.005 mol) and powdered selenium dioxide (0.05 mol) in dry tetrahydrofuran was gently heated on a water bath for 2 h. The selenium deposited on cooling was removed by filtration, and the filtrate was poured into crushed ice, extracted with chloroform, and purified by column chromatography using silica gel (60–120 mesh) with petroleum ether:ethyl acetate (97:3) as eluent to give the title compound, which was recrystallized from ethanol.

Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic C—H, C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃, and C—H = 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for tertiary CH.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

5-(2-Methyl-2-nitro-1-phenylpropyl)-4-phenyl-1,2,3-selenadiazole

Crystal data	
C ₁₈ H ₁₇ N ₃ O ₂ Se	Z = 4
$M_r = 386.31$	$F_{000} = 784$
Monoclinic, $P2_1/c$	$D_{\rm x} = 1.490 {\rm Mg m}^{-3}$
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.0178 (8) Å	$\theta = 2.5 - 26.5^{\circ}$
b = 10.2084 (8) Å	$\mu = 2.20 \text{ mm}^{-1}$
c = 17.4139 (14) Å	T = 295 (2) K
$\beta = 104.820 \ (1)^{\circ}$	Needles, colourless
V = 1721.6 (2) Å ³	$0.20\times0.18\times0.14~mm$

Data collection

Bruker APEXII CCD area-detector diffractometer	3011 independent reflections
Radiation source: fine-focus sealed tube	2648 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 295(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω and ϕ scan	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.656, T_{\max} = 0.735$	$k = -12 \rightarrow 12$
12015 measured reflections	$l = -20 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H-atom parameters constrained
$wR(F^2) = 0.075$	$w = 1/[\sigma^2(F_0^2) + (0.0366P)^2 + 0.596P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{max} < 0.001$

3011 reflections

$\Delta\rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

219 parameters

Primary atom site location: structure-invariant direct Extinction correction: none

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.66748 (18)	0.31725 (19)	0.28521 (11)	0.0402 (4)
C2	0.73047 (19)	0.2198 (2)	0.25334 (11)	0.0431 (4)
C3	0.8128 (2)	0.1080 (2)	0.29364 (13)	0.0460 (5)
C4	0.9297 (2)	0.0713 (2)	0.26935 (17)	0.0614 (6)
H4	0.9535	0.1174	0.2287	0.074*
C5	1.0099 (3)	-0.0320 (3)	0.3047 (2)	0.0748 (8)
Н5	1.0877	-0.0551	0.2878	0.090*
C6	0.9766 (3)	-0.1009 (3)	0.3642 (2)	0.0776 (8)
H6	1.0323	-0.1698	0.3884	0.093*
C7	0.8601 (3)	-0.0683 (2)	0.38843 (19)	0.0726 (7)
H7	0.8364	-0.1161	0.4285	0.087*
C8	0.7786 (2)	0.0356 (2)	0.35307 (15)	0.0551 (5)
H8	0.6999	0.0570	0.3694	0.066*
C9	0.66122 (18)	0.32706 (18)	0.37080 (10)	0.0378 (4)
Н9	0.7280	0.2624	0.3994	0.045*
C10	0.52177 (19)	0.28285 (18)	0.38264 (11)	0.0395 (4)
C11	0.3962 (2)	0.3206 (2)	0.33330 (13)	0.0556 (5)
H11	0.3946	0.3758	0.2906	0.067*
C12	0.2732 (2)	0.2775 (3)	0.34655 (15)	0.0657 (6)
H12	0.1899	0.3040	0.3127	0.079*
C13	0.2729 (2)	0.1960 (2)	0.40919 (14)	0.0606 (6)
H13	0.1900	0.1673	0.4180	0.073*
C14	0.3959 (2)	0.1575 (2)	0.45835 (13)	0.0548 (5)
H14	0.3965	0.1024	0.5010	0.066*
C15	0.5196 (2)	0.1996 (2)	0.44542 (11)	0.0455 (4)
H15	0.6024	0.1718	0.4792	0.055*
C16	0.7372 (3)	0.4458 (2)	0.50239 (14)	0.0654 (7)
H16A	0.7824	0.5232	0.5277	0.098*
H16B	0.7954	0.3711	0.5195	0.098*
H16C	0.6514	0.4341	0.5164	0.098*
C17	0.6152 (3)	0.5761 (2)	0.38362 (18)	0.0718 (7)
H17A	0.5244	0.5569	0.3893	0.108*
H17B	0.6106	0.5926	0.3287	0.108*
H17C	0.6509	0.6521	0.4146	0.108*
C18	0.7094 (2)	0.4603 (2)	0.41242 (12)	0.0471 (5)
N1	0.72242 (19)	0.2320 (2)	0.17298 (11)	0.0580 (5)
N2	0.6597 (2)	0.3306 (2)	0.13660 (11)	0.0672 (6)
N3	0.8516 (2)	0.4868 (2)	0.39698 (13)	0.0674 (6)
01	0.8740 (3)	0.5919 (3)	0.37260 (19)	0.1272 (10)
02	0.9345 (2)	0.4001 (2)	0.40993 (16)	0.0999 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

Se1	0.59391 (2)	0.43684 (3)	0.2059	95 (13) 0	.06304 (11)	
Atomic displace	ement parameters	$(Å^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0368 (9)	0.0485 (11)	0.0338 (9)	-0.0014(8)	0.0062 (7)	0.0006 (8)
C2	0.0398 (10)	0.0528 (11)	0.0371 (10)	-0.0092(8)	0.0106 (8)	-0.0110 (8)
C3	0.0443 (10)	0.0434 (11)	0.0523 (12)	-0.0078(9)	0.0157 (9)	-0.0149 (9)
C4	0.0554 (13)	0.0611 (15)	0.0744 (16)	-0.0011 (11)	0.0288 (12)	-0.0077 (12)
C5	0.0578 (14)	0.0686 (16)	0.106 (2)	0.0093 (12)	0.0350 (15)	-0.0059 (16)
C6	0.0712 (17)	0.0532 (15)	0.108 (2)	0.0143 (12)	0.0221 (16)	-0.0011 (15)
C7	0.0861 (18)	0.0498 (14)	0.089 (2)	0.0021 (12)	0.0353 (16)	0.0072 (13)
C8	0.0534 (12)	0.0458 (12)	0.0711 (15)	-0.0022 (10)	0.0247 (11)	-0.0061 (11)
C9	0.0409 (9)	0.0401 (10)	0.0317 (9)	0.0051 (8)	0.0080 (7)	0.0007 (7)
C10	0.0448 (10)	0.0399 (10)	0.0342 (9)	0.0018 (8)	0.0109 (8)	-0.0031 (8)
C11	0.0487 (12)	0.0673 (14)	0.0493 (12)	0.0024 (10)	0.0098 (9)	0.0116 (11)
C12	0.0440 (12)	0.0875 (18)	0.0627 (15)	0.0022 (11)	0.0083 (10)	0.0027 (13)
C13	0.0543 (13)	0.0717 (15)	0.0606 (14)	-0.0155 (11)	0.0237 (11)	-0.0112 (12)
C14	0.0710 (14)	0.0537 (13)	0.0453 (12)	-0.0090 (11)	0.0250 (11)	-0.0019 (10)
C15	0.0541 (11)	0.0476 (11)	0.0353 (10)	0.0015 (9)	0.0124 (8)	0.0008 (8)
C16	0.0818 (17)	0.0696 (16)	0.0457 (13)	-0.0152 (12)	0.0176 (12)	-0.0183 (11)
C17	0.096 (2)	0.0455 (13)	0.0772 (18)	0.0073 (12)	0.0286 (15)	-0.0066 (12)
C18	0.0520 (11)	0.0475 (12)	0.0445 (11)	-0.0048 (9)	0.0176 (9)	-0.0068 (9)
N1	0.0585 (11)	0.0780 (13)	0.0391 (10)	-0.0126 (10)	0.0154 (8)	-0.0145 (9)
N2	0.0672 (12)	0.1000 (16)	0.0340 (9)	-0.0072 (12)	0.0121 (9)	-0.0023 (10)
N3	0.0674 (13)	0.0718 (14)	0.0678 (13)	-0.0237 (12)	0.0261 (11)	-0.0214 (11)
01	0.130 (2)	0.0974 (17)	0.179 (3)	-0.0430 (15)	0.085 (2)	0.0092 (17)
O2	0.0529 (11)	0.1075 (16)	0.141 (2)	-0.0099 (11)	0.0285 (12)	-0.0342 (15)
Se1	0.06546 (17)	0.0811 (2)	0.04209 (15)	0.01614 (12)	0.01289 (11)	0.01866 (11)
Geometric para	umeters (Å, °)					
C1—C2		1.369 (3)	C11—	H11	0.93	00

01-02	1.507 (5)		0.7500
C1—C9	1.511 (2)	C12—C13	1.373 (3)
C1—Se1	1.8483 (18)	C12—H12	0.9300
C2—N1	1.387 (3)	C13—C14	1.366 (3)
C2—C3	1.477 (3)	С13—Н13	0.9300
C3—C8	1.384 (3)	C14—C15	1.383 (3)
C3—C4	1.393 (3)	C14—H14	0.9300
C4—C5	1.372 (4)	С15—Н15	0.9300
C4—H4	0.9300	C16—C18	1.527 (3)
C5—C6	1.363 (4)	C16—H16A	0.9600
С5—Н5	0.9300	C16—H16B	0.9600
C6—C7	1.380 (4)	C16—H16C	0.9600
С6—Н6	0.9300	C17—C18	1.516 (3)
С7—С8	1.383 (3)	С17—Н17А	0.9600
С7—Н7	0.9300	С17—Н17В	0.9600
С8—Н8	0.9300	С17—Н17С	0.9600
C9—C10	1.531 (3)	C18—N3	1.540 (3)

C0 C18	1 550 (3)	NI NO	1 267 (3)
С9—118	0.9800	$N_1 = N_2$ $N_2 = Se_1$	1.207(3) 1.865(2)
	1 384 (3)	N2 02	1.005(2) 1.105(3)
C10_C15	1.384(3)	N3 01	1.195(3) 1.107(3)
C11 C12	1.387(3)	NJ-01	1.197 (3)
	1.382 (3)		
C2_C1_C9	125.99 (17)	C13-C12-C11	120.6 (2)
C2—C1—Sel	108.33 (14)	С13—С12—Н12	119.7
C9—C1—Sel	125.67 (14)	С11—С12—Н12	119.7
C1—C2—N1	115.48 (19)	C14—C13—C12	119.2 (2)
C1—C2—C3	128.94 (17)	С14—С13—Н13	120.4
N1—C2—C3	115.47 (18)	C12—C13—H13	120.4
C8—C3—C4	118.1 (2)	C13—C14—C15	120.7 (2)
C8—C3—C2	123.56 (18)	C13—C14—H14	119.6
C4—C3—C2	118.3 (2)	C15—C14—H14	119.6
C5—C4—C3	120.8 (3)	C14—C15—C10	120.88 (19)
C5—C4—H4	119.6	C14—C15—H15	119.6
C3—C4—H4	119.6	C10-C15-H15	119.6
C6—C5—C4	120.5 (2)	C18—C16—H16A	109.5
С6—С5—Н5	119.8	C18—C16—H16B	109.5
С4—С5—Н5	119.8	H16A—C16—H16B	109.5
C5—C6—C7	120.0 (3)	C18—C16—H16C	109.5
С5—С6—Н6	120.0	H16A—C16—H16C	109.5
С7—С6—Н6	120.0	H16B—C16—H16C	109.5
C6—C7—C8	119.8 (3)	C18—C17—H17A	109.5
С6—С7—Н7	120.1	C18—C17—H17B	109.5
С8—С7—Н7	120.1	H17A—C17—H17B	109.5
C7—C8—C3	120.8 (2)	C18—C17—H17C	109.5
С7—С8—Н8	119.6	H17A—C17—H17C	109.5
С3—С8—Н8	119.6	H17B—C17—H17C	109.5
C1—C9—C10	112.50 (14)	C17—C18—C16	110.5 (2)
C1—C9—C18	115.50 (16)	C17—C18—N3	109.3 (2)
C10—C9—C18	112.28 (15)	C16—C18—N3	105.18 (18)
С1—С9—Н9	105.1	C17—C18—C9	115.74 (18)
С10—С9—Н9	105.1	C16—C18—C9	110.28 (17)
С18—С9—Н9	105.1	N3—C18—C9	105.20 (16)
C11—C10—C15	117.65 (18)	N2—N1—C2	117.96 (19)
C11—C10—C9	123.35 (17)	N1 - N2 - Se1	110.50 (14)
C15-C10-C9	119.00 (16)	02 - N3 - 01	123.2 (3)
C_{12} C_{11} C_{10}	121.0 (2)	02 - N3 - C18	117.8 (2)
C12—C11—H11	119 5	01 - N3 - C18	1190(3)
C10—C11—H11	119.5	C1 = Se1 = N2	87 71 (9)
	170.0((17)		170.9 (2)
$C_{2} = C_{1} = C_{2} = N_{1}$	1/9.90 (1/)	$C_{2} = C_{10} = C_{11} = C_{12} = C_{12}$	1/9.8 (2)
Se1 - C1 - C2 - N1	-1.1(2)	C10-C11-C12-C13	0.0 (4)
$U_{9} - U_{1} - U_{2} - U_{3}$	-4.1(3)	C11 - C12 - C13 - C14	-0.1(4)
Se1 - C1 - C2 - C3	1/4.85 (16)	U12-U13-U14-U15	-0.1 (4)
C1—C2—C3—C8	40.8 (3)	C13—C14—C15—C10	0.6 (3)
N1—C2—C3—C8	-143.3 (2)	C11—C10—C15—C14	-0.7 (3)
C1—C2—C3—C4	-140.7 (2)	C9—C10—C15—C14	179.88 (18)

supplementary materials

N1—C2—C3—C4	35.2 (3)	C1—C9—C18—C17	69.7 (2)
C8—C3—C4—C5	-1.4 (3)	C10-C9-C18-C17	-61.1 (2)
C2—C3—C4—C5	-179.9 (2)	C1C9C18C16	-164.00 (18)
C3—C4—C5—C6	0.1 (4)	C10-C9-C18-C16	65.2 (2)
C4—C5—C6—C7	1.1 (5)	C1C9C18N3	-51.1 (2)
C5—C6—C7—C8	-1.0 (4)	C10-C9-C18-N3	178.10 (16)
C6—C7—C8—C3	-0.3 (4)	C1—C2—N1—N2	0.5 (3)
C4—C3—C8—C7	1.4 (3)	C3—C2—N1—N2	-176.01 (18)
C2—C3—C8—C7	179.9 (2)	C2-N1-N2-Se1	0.4 (2)
C2-C1-C9-C10	-101.3 (2)	C17—C18—N3—O2	-173.6 (2)
Se1—C1—C9—C10	79.92 (19)	C16-C18-N3-O2	67.8 (3)
C2-C1-C9-C18	128.0 (2)	C9—C18—N3—O2	-48.7 (3)
Se1-C1-C9-C18	-50.8 (2)	C17—C18—N3—O1	6.2 (3)
C1—C9—C10—C11	-45.2 (3)	C16-C18-N3-O1	-112.4 (3)
C18-C9-C10-C11	87.1 (2)	C9—C18—N3—O1	131.1 (3)
C1—C9—C10—C15	134.18 (18)	C2-C1-Se1-N2	1.03 (14)
C18—C9—C10—C15	-93.5 (2)	C9—C1—Se1—N2	179.98 (16)
C15-C10-C11-C12	0.4 (3)	N1—N2—Se1—C1	-0.81 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C11—H11…Se1	0.93	2.84	3.534 (2)	133
C17—H17B…Se1	0.96	2.63	3.361 (3)	133
C5—H5···Cg1 ⁱ	0.93	2.76	3.6297 (3)	156
Symmetry codes: (i) $-x+2$, $y-1/2$, $-z+1/2$.				

